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Abstract: Heavy metal pollution in marine ecosystems is an escalating environmental concern, largely
driven by anthropogenic activities, and poses potential threats to ecological health and human well-
being. This study embarked on a comprehensive investigation into the concentrations of heavy
metals in sediment samples and evaluated their potential ecological and health risks with a focus on
Eastern St. Martin’s Island (SMI), Bangladesh. Sediment samples were meticulously collected from
12 distinct sites around the island, and the concentrations of heavy metals, including Mn, Fe, Ni, Zn,
Cr, Pb, and Cu, were quantified utilizing atomic absorption spectrometry (AAS). The results revealed
that the average concentrations of the metals, in descending order, were Mn (269.5 ± 33.0 mg/kg),
Fe (143.8 ± 21.7 mg/kg), Ni (29.6 ± 44.0 mg/kg), Zn (27.2 ± 4.34 mg/kg), Cr (8.09 ± 1.67 mg/kg),
Pb (5.88 ± 0.45 mg/kg), and Cu (3.76 ± 0.60 mg/kg). Intriguingly, the concentrations of all the
measured metals were found to be within permissible limits and comparatively lower than those
documented in various national and international contexts. The ecological risk assessment, based
on multiple sediment quality indices such as the geoaccumulation index, contamination factor, and
pollution load index, indicated a moderate risk to the aquatic ecosystem but no significant adverse
impact on sediment quality. Additionally, the human health risk assessment, encompassing non-
carcinogenic hazard indices for different age groups, was considerably below the threshold, signifying
no immediate health risk. The total carcinogenic risk was also found to be below acceptable levels.
These findings underscore the current state of heavy metal pollution in Eastern St. Martin’s Island,
providing valuable insights for environmental monitoring and management. While the immediate
risks were not alarming, the study highlights the imperative need for sustained monitoring and the
implementation of rigorous regulations to curb heavy metal pollution in order to safeguard both
ecological and human health. This warrants the development of policies that are both adaptive and
preemptive to ensure the sustainable utilization and conservation of marine resources.
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1. Introduction

Heavy metals (HMs)are widely regarded as some of the most dangerous pollutants in
the natural environment, owing to their toxicity, persistence, and propensity to accumulate
within living organisms. These contaminants pose significant risks to ecosystems and
can lead to severe repercussions [1–3]. Both geogenic and human-made sources of HMs
are found in marine sediments. Domestic and mining waste disposal are the main an-
thropogenic inputs due to rising industrialization, urbanization, and related activities like
agriculture [4,5]. Uncommon activities can release heavy metals into aquatic ecosystems
where they are transported by the water column, settle in sediment, and become increas-
ingly concentrated as they move up the food chain through bio-magnification. This poses a
significant danger to both aquatic life and humans [6–8]. While lower concentrations of
HMs are essential for organism survival, higher concentrations are harmful and negatively
affect living things.

Heavy metal contamination is very severe in coastal sediments. Aquatic species living
in seawater and sediments can accumulate HMs [2]. These can build up in sediments and
are typically present in aquatic environments as dissolved or particulate matter. Heavy
metals are far more prevalent in the sediment than in the water column, as they tend to be
deposited in the lowest layers of water bodies. As a result, contaminants like heavy metals
may sink into the sediments [9]. In aquatic environments, sediments on the seafloor are
regarded as potential sources and transporters of contaminants [1,7,10]. To comprehend
the contamination in the marine environment, it is helpful to investigate the distribution
of HMs in surface sediments. Important factors affecting the accretion and availability of
HMs in the sediment include sediment characteristics, metal features, pH, organic matter,
and redox potential [11].

Environmental contamination assessment requires the analysis of hazardous compo-
nents in sea sand [12]. Monitoring sediment yields useful data on a range of contamination
indicators. Understanding the pollutant source in the sediments of aquatic ecosystems is
essential for pollution control. Various methods have been utilized thus far to determine
the ecological risks related to heavy metals (HMs) [13]. A considerable body of research has
focused on evaluating heavy metal contamination in sediment by applying multi-variate
statistical techniques such as Pearson correlation analysis, principal component analysis
(PCA), and cluster analysis, effectively identifying the pollution sources [14]. Consequently,
the metal pollution evaluation in sediment was carried out using indices such as con-
tamination degree (Cd), pollution load index (PLI), potential ecological risk (PER), and
geoaccumulation index (Igeo). These indices facilitated the determination of contamination
levels and associated potential hazards.

Bangladesh’s SMI is a distinctive feature. But either purposely or accidentally, the
island is being poisoned. The majority of effluents from the tanning, electroplating, textile,
mining, printing, dyeing, photo, and pharmaceutical industries are dumped straight into
rivers [7]. River water that has been discharged and contains toxins contaminates coastal
waterways. These impurities combine with seawater and contaminate the water (both
coastal and offshore). Infected aquatic life includes fish, crabs, turtles, corals, and benthic
organisms. Prolonged exposure to health risks is linked to the consumption of seafood and
marine fish from these waters. The commercial fishing industries functioning along the
coastline employ approximately five million people. Coastal communities primarily rely
on fish and crustaceans as essential sources of protein and income.

The world is recognized for its immaculate environments, including coral islands and
ecosystems, that must be protected from heavy metal contamination [15]. Saint Martin’s
Island, situated in the Bay of Bengal and known for its living coral reefs, has experienced
rapid growth due to the unforeseen tourism industry in Bangladesh. Yet, the island can be
significantly impacted by increased tourist traffic. During peak season, over 3000 tourists
are transported daily from Teknaf to Saint Martin’s Island by six large ships and numerous
small local boats. During the holidays, this number increases to over 5000 tourists. [16] On
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a small island like this, they frequently choose to spend the night. If there are more tourists,
the level of environmental contamination increases [17]

Other potential metal pollution sources in seawater include domestic and municipal
waste, painted fishing boats, and agricultural runoff. Tourism activities in various parts
of the world can cause the leaching of heavy metals, which can have dangerous effects
on coral and coral ecosystems [15]. The island’s development efforts in response to rising
visitor numbers could manifest in greater concentrations of contaminants like heavy metals
in the water [18]. As a result, the island’s aquatic ecosystem has been getting worse
due to the constant infiltration of heavy metals from both anthropogenic and natural
sources [19]. Heavy metals and other contaminants were discovered by [15] in the sediment
and water of Saint Martin’s Island. Additionally, the sediments around the island have not
yet been carefully examined. It is essential to improve our understanding of the current
levels of heavy metal concentration in the sediment of this marine habitat. If the island is
contaminated with metals, it is very dangerous for living organisms, island people, and
tourists. This study aims to assess the concentration of heavy metals present in sediment
and evaluate the potential risk to human health due to these contaminants.

2. Materials and Methods
2.1. Study Area

This study was carried out in twelve sampling locations in the southernmost part
of Bangladesh and the northeastern part of the Bay of Bengal, focusing on Saint Martin’s
Island (Figure 1). The Teknaf peninsula, at around 9 km north of the island, used to extend
onto the island millennia ago, but subsequently, some of this peninsula became submerged,
resulting in the southernmost part of this peninsula becoming an island with an area of
3 km2 and being cut off from the Bangladesh mainland. The island was first inhabited
250 years ago, in the 18th century, by Arabian traders who gave it the name “Jazira”. The
majority or most of the residents (~3700) of the island depend heavily on fishing. The other
major food sources are coconut and rice [20].

SMI is abundant with algae, which are generally gathered, dried, and shipped to
Myanmar. The island is home to a variety of ecosystems, including rocky areas, mangroves,
lagoons, and coral-rich regions. Many animal species find refuge on the island. In 2010,
the island was home to 153 species of seaweeds, 187 species of oysters, 66 species of
coral, 240 species of fish, 29 species of reptiles, 120 species of birds, and 29 species of
mammals [21]. In 2022, the region nearby was designated as a marine protected area [22,23].

The northeastern corner of the Indian Ocean is home to the Bay of Bengal, which
is the biggest semi-enclosed tropical bay in the world and roughly triangular in shape.
It is a small island that makes up the southernmost region of Bangladesh and is located
in the northeastern Bay of Bengal, roughly 9 km south of the peninsular point of Cox’s
Bazar-Teknaf. At the mouth of the Naf River, it is located about 8 km to the west of
Myanmar’s northwest coast. This island is located between latitudes 20◦34′ and 20◦39′ N
and longitudes 92◦18′ and 92◦21′ E. It is locally referred to as Narikel Jinjira and is 3.6 m
above the average sea level with a nearly flat shape. The open sea southwest of the island
is substantially deeper than the 9.66 km wide canal that connects it to the mainland. Reefs
can be found 10 to 15 km to the west-northwest [24].

An anticlinal rise symbolizes the island’s straightforward geological structure. The
west shore of Dakshinpara contains a small portion of the anticline’s axis. The exposed
part of the axis runs roughly parallel to the island from north-northeast (NNW) to south-
southeast (SSE). A fault with a trend that is almost parallel to the axis runs along the
northwest coast. Coral clumps and molluscan coquina horizons make up Saint Martin’s
limestone. Wherever they occur beneath the alluvium, the shelly limestone acts as a good
aquifer due to its high porosity and permeability. The main supply of fresh water comes
from recent coastal sands and shelly limestone [24].
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Figure 1. Map showing the eastern side of St. Martin’s Island. S1 to S12 are locations of the
sampling sites.

2.2. Sample Collection and Preservation

To investigate the heavy metal contamination in the sediments of SMI, 12 composite
sediment samples were collected randomly from the eastern 12 sites of the island based
on the probable contamination level in 2022. Using an Ekman dredge, samples of about
500 g were taken from each location and stored in airtight polyethylene plastic bags. The
samples collected were shipped to the laboratory of the Bangladesh Council of Scientific
and Industrial Research (BCSIR), Chittagong, Bangladesh, for heavy metals analysis. The
samples were dried in an oven for 48 h at a temperature of 45 ◦C. After being air dried, the
samples were ground into a fine powder utilizing mortar and pestle, then sieved utilizing a
106 m mesh and placed in a polycarbonate vial. The vial was marked with an identification
label and stored in a desiccator for metal analysis.

2.3. Sample Digestion, Analysis, and Quality Control

Digestion of about 2 g of the sediment sample was carried out with 10 mL of con-
centrated HNO3 and 5 mL concentrated HClO4 in a 100 mL glass beaker at 130 ◦C for
5 h to almost dryness. After complete digestion was indicated by a transparent solution,
the mixture was passed through Whatman filter paper (No. 41), washed with a 1/10 M
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concentrated HNO3 solution, and raised to a volume of 100 mL in a calibrated volumetric
flask for metal analysis.

In this study, the sediment samples were analyzed for concentrations of chromium
(Cr), nickel (Ni), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and iron (Fe) using
an atomic absorption spectrophotometer (AAS, Model No. ZEEnit700P#150Z7P0110 from
Analytikjena, Germany) in an air/acetylene flame. The choice to focus on these specific
metals was informed by several factors that are crucial for a comprehensive assessment
of heavy metal pollution in marine sediments. Primarily, these metals are prevalent con-
taminants in marine environments, often emanating from anthropogenic sources such as
industrial activities, agricultural practices, and maritime operations. Monitoring these
metals is essential for gauging the overall extent of heavy metal pollution in marine envi-
ronments. Furthermore, certain metals among the selected ones, like lead and chromium,
are notorious for their potential toxicity to both aquatic organisms and humans. Evaluating
the concentrations of these metals is indispensable for assessing the potential ecological
risks and human health implications associated with their presence in the sediments. In
addition, metals such as copper, zinc, manganese, and iron are trace elements that are
vital for the physiological functions of aquatic life. However, their toxicity escalates with
increased concentrations. Therefore, assessing these metals helps in deciphering their
role in the marine ecosystem and ensuring that their levels remain within non-hazardous
ranges. Further, the selection aligns with international norms and guidelines for heavy
metal pollution assessment and draws from precedent in the literature. This alignment
facilitates meaningful comparisons with other studies and aids in contributing to the global
dialogue and understanding of trends in marine heavy metal pollution. By analyzing
these specific metals, the study aims to provide a robust and informed evaluation of heavy
metal pollution, its potential ecological impacts, and the implications for human health
in Eastern St. Martin’s Island. In-house validation of each technique was performed as
per the guidelines of EC567/2002. All the requirements for analyzing heavy metals in the
samples using atomic absorption spectroscopy are listed in Table 1.

Table 1. Analytical requirements for heavy metals analysis utilizing AAS.

Heavy
Metals

Wave Length
(nm)

Lamp Current
(mA) Slit (nm) Detection

Limit (mg/L)
Calibration

Range (mg/L)

Cr 357.9 12 0.5 0.25–2.0 Flame-AAS
Cu 324.8 5 0.5 0.25–2.0 Flame-AAS
Ni 232.0 15 0.2 0.25–2.0 Flame-AAS
Mn 279.5 12 0.2 0.25–2.0 Flame-AAS
Zn 213.9 10 0.2 0.25–2.0 Flame-AAS
Pb 217.0 10 0.5 0.25–2.0 Flame-AAS
Fe 248.3 15 0.2 0.25–2.0 Flame-AAS

Sigma Aldrich’s (Buchs, Switzerland) standard material was used to establish the
instrument’s calibration curve for metal analysis. Deionized water was utilized throughout
the experiment for the sample and standard preparations. All analytical glassware contain-
ers had to be cleaned thoroughly with 20% HNO3 before being washed many times using
deionized water and dried in the oven.

2.4. Sediment Contamination Level Assessment
2.4.1. Evaluating Geoaccumulation Index (Igeo)

The geoaccumulation index or Igeo is a crucial ecological measure for separating
naturally occurring metals from artificial sources of metal and assessing the contamination
degree in the samples of sediment. The following equation defines the geoaccumulation
index (Igeo):

Igeo = log2

(
Cn

1.5 BAn

)
(1)
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where Cn is the metal concentration in sediment samples and BAn is the background
geochemical metal concentration (n). The background matrix correction factor, which
accounts for lithospheric effects, is 1.5. Seven categories were established by Müller
(1981) [25] for the geoaccumulation index (Table 2).

Table 2. Geoaccumulation Index Categories for Assessing Sediment Quality.

Classification Contamination Degree

Igeo less than 0 Practically uncontaminated
0 less than or equivalent Igeo less than 1 Uncontaminated to moderately contaminated
1 less than or equivalent Igeo less than 2 Moderately contaminated
2 less than or equivalent Igeo less than 3 Moderately to heavily contaminated
3 less than or equivalent Igeo less than 4 Heavily contaminated
4 less than or equivalent Igeo less than 5 Heavily to extremely contaminated

Igeo greater than or equivalent to 5 Extremely contaminated
Note: Source: [25].

2.4.2. Evaluating Contamination Factor (CF) and Pollution Load Index (PLI)

Contamination factor (CF) is utilized to evaluate contamination in the area of interest.
The pollution load index (PLI) was utilized to quickly assess sediment quality in the
study area.

CF = Cn(Sample)/Bn(Shale) (2)

PLI = (CF1× CF2× CF3× . . .×CFn)1/n (3)

To calculate the contamination factor (CF) value [26], the conc. of each metal in the
sediment is divided by its respective background level. In terms of PLI, “n” denotes the total
number of elements being assessed. A CF value of less than 1 signifies low contamination,
while a CF value between 1 and 3 indicates moderate contamination. A CF value between
3 and 6 suggests considerable contamination, and a CF value of 6 or greater points to
extremely high pollution levels. For PLI, a value of 0 represents ideal quality, a value below
1 signifies no pollution, and a value greater than 1 denotes the presence of pollution.

2.5. Evaluation of Potential Ecological Risk

For assessing ecological risks, a method was developed by Hakanson related to heavy
metal pollution in 1980 [26]. This approach can be applied to estimate the productivity of an
aquatic environment, which is an aspect of its assumed sensitivity. The potential ecological
risk index (PERI) was also established to measure the pollution degree in sediments.
This index allows for a more accurate assessment of the potential ecological risk factor
(PERF) tied to contamination by heavy metals by integrating environmental and ecological
consequences with toxicological considerations [27]. Following are the equations used for
its calculation:

Ei
r= Ti

r × CF (4)

Ci
f = Ci

n/Ci
o (5)

RI =
n

∑
i=1

Ei
r (6)

In this context, RI represents the cumulative risk of all heavy metals present in
the sediment, while Ei

r denotes the individual PERF. The toxic response factor (TRF)
for specific elements accountable for toxicity and sensitivity is represented by Ti

r). The
individual contamination factor (CF) is symbolized by Ci

f , while Ci
n and Ci

o represent
the sediment metal content and the background value for each element, respectively.
The PERI for the sediment can be categorized as follows: Ei

r < 30, RI < 100—low risk;
30 ≤ Ei

r < 50, 100 ≤ RI < 150—moderate risk; 50 ≤ Ei
r < 100, 150 ≤ RI < 250—significant
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risk; 100 ≤ Ei
r < 150, 200 ≤ RI < 350—very high risk; and Ei

r > 150, RI> 350—disastrous
risk [27,28].

2.6. Assessing Human Health Risk

To evaluate the danger to human health as a result of exposure to the trace metals
contained in soil, chronic daily intake (CDI) was utilized. Since humans use three different
techniques to absorb metal contents, CDIs can be assessed for these routes: cutaneous,
inhalation, and ingestion) [29–31]

CDI ( f or inhalation) =
PM× CS× ET × EF× IRair × ED

BW × PEF× AT
(7)

CDI ( f or dermal contact) =
CS× SA× AF× EF× ED× ABS

BW × AT × 106 (8)

CDI ( f or ingestion) =
CS× EF× ED× IRS

BW × AT × 106 (9)

In this equation, CS represents the soil trace metal concentration. At the same time, PM
refers to the ambient concentration of particulate matter in the target area (0.146 mg/kg).
In contrast, ET corresponds to the 24-h daily exposure frequency, and EF signifies the
350-day annual exposure frequency. IRair denotes the inhalation rate of air (20 m3/d),
and ED refers to the 30-year exposure duration [31,32]. Body weight is indicated by
BW, with adults being 70 kg and children being 15 kg [32]. Particle emission factor or
PEF is 1.36 × 109 m3/kg according to [32] guidelines. For non-carcinogenic substances,
the average time is calculated as 365 × ED days, while for carcinogenic substances, it is
365 × 70 days. The skin surface area is denoted by SA for soil contact exposure, being
5700 cm2/d for adults and 2800 cm2/d for children. The adherence factor of soil is indicated
by AF: 0.07 mg/cm2 for adults and 0.2 mg/cm2 for children, according to [31]—a conversion
factor of 106 to convert from kg to mg. ABS corresponds to the fraction of dermal absorption
at 0.001 for other elements and 0.03 for arsenic (As), while IRS represents the ingestion rate
of 100 mg/d according to the guidelines of [31].

2.6.1. Assessing Non-Carcinogenic Risk

Due to varying levels of exposure to heavy metal concentrations, the hazard quotient
(HQ) was used to evaluate the non-carcinogenic risk associated with a specific metal. The
ratio of chronic daily intake (CDI, mg/kg/d) to the reference dose (mg/kg/day) was
employed to calculate the hazard quotient (HQ) [33]. The following equations were used
to assess the hazard quotient (HQ) and hazard index (HI) [34]:

HI =
n

∑
i=1

HQk = HQinhalation + HQdermal + HQingestion (10)

RfD values (in mg/kg/day) and exposure pathways for various elements are as
follows: Pb (3.5 × 10−3), Cr (3 × 10−3), Cd (1 × 10−3), and Hg (3 × 10−4). If the HI is
greater than 1, it depicts no option to alleviate the non-carcinogenic effect, indicating that
there is a higher likelihood of human exposure [35].

2.6.2. Assessing Carcinogenic Risk

By employing the cancer slope factor (CSF) for the specific metal content for each
pathway, the lifetime cancer risk (CR) exposure was evaluated. As per [31], the CSF
value is 0.5 mg/kg/day for chromium (Cr). To determine the CR, the following formula
was utilized:

CRi = CSFi × CDIi (11)
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CR =
n

∑
i=1

CRi (12)

The lifetime permissible CR limit ranges from 10−6 to 10−4. A number >10−5 suggests
a higher likelihood of somebody developing malignancy than 1 in 100,000 [36–40].

2.7. Statistical Analyses

To address potential concerns related to data distribution, the Shapiro-Wilk and
Kolmogorov-Smirnov tests were employed to assess whether the data followed a nor-
mal distribution. A statistical significance level of p ≤ 0.05 was used for correlation analysis
to evaluate the associations between the variables under investigation. Cluster analy-
sis (CA) is an unsupervised pattern recognition technique that uncovers the underlying
structure of a dataset without making any assumptions about the data. This enables the clas-
sification or grouping of the system’s objects based on their closeness or similar pairing [41].
Hierarchical clustering is a widely used method in which clusters are incrementally formed,
initially pairing the most similar items and then constructing larger clusters in a stepwise
manner. Analytical measurements from both samples can be used to express a “distance”,
with the Euclidean distance typically indicating similarities between two samples [42]. In
this study, the normalized dataset was subjected to hierarchical agglomerative CA using
Ward’s method and Euclidean distances as an index of similarity [43]. This approach seeks
to minimize the sum of squares for any two clusters that can be formed at each step while
evaluating cluster distances using analysis of variance. The linkage distance is presented as
Dlink/Dmax to standardize its display on the y-axis. This ratio is the sum of the linkage
distances for all cases divided by the maximum distance multiplied by a hundred.

3. Results and Discussion
3.1. Heavy Metals Concentrations in Sediment

Data from the measurement of heavy metals (Cr, Cu, Ni, Mn, Zn, Fe, and Pb) in the
surface sediment of Saint Martin’s Island are displayed in Figure 2. Due to decreased water
flow, sediment has an average Mn and Fe concentration that is larger than that of other
metals, likely contributing to the accumulation of heavy metals [44,45]. Metals in sediment
can come from various sources, including trawlers, agricultural waste, gum boats, engine
boats, and ships. Moreover, Cox’s Bazar and Chittagong, two adjacent industries, can
be the source of metals. The heavy metal average concentration in sediments was in the
decreasing order of Mn > Fe > Ni > Zn > Cr > Pb > Cu in twelve sites (Figure 2).
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Figure 2. Heavy metals concentrations in the different site’s sediment of Eastern Saint Martin’s Island.
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3.1.1. Chromium (Cr)

Cr is a multifaceted metal, abundantly present in the Earth’s crust in various forms
and found in deposits such as plants and ores [46]. Its presence is attributed to both
natural sources and human activities, including industrial processes like shipbreaking,
stainless steel production, and plating [47]. Notably, Cr compounds are known to bind with
sediments, and their toxicity, especially Cr(VI), poses health risks, including liver and lung
damage and respiratory issues [48,49]. This study observed an average Cr concentration
of 8.91 mg/kg in sediments, with the highest at Site 10 (12.0 mg/kg) and the lowest at
Site 8 (6.12 mg/kg). Remarkably, these concentrations were below the limits set by WHO,
USEPA, and FAO. While similar findings were reported in Nijhum Dweep by Rahman et al.
(2022a), other studies observed significantly higher concentrations, such as 121.9 mg/kg
in the Sitakunda shipbreaking area [50] and 48.8 mg/kg in Sundarbans sediment [50].
Comparative international data includes 6.48–8.86 mg/kg on the Kalpakkam coast of
India [51] and 35.8 mg/kg in Coastal Pearl Bay of China [52], both notably higher than the
current study (Table 3).

Table 3. Comparative Analysis of Heavy Metal Concentrations (mg/kg) in Marine/Coastal Sedi-
ments: A Global Perspective Including National and International Studies.

Sites Cr Cu Ni Mn Zn Pb Fe Country References

National

Saint Martin’s Island 8.91 3.76 29.6 269.5 27.17 5.88 143.8 Bangladesh Present
study

Nijhum Dweep 7.2 37 9.26 95.2 20.7 5.63 4706.2 Bangladesh [53]
Sitakunda shipbreaking area 121.9 na na na na 65.3 na Bangladesh [2]

Dhaleshwari River 186 1.76 3.12 8.78 42.7 Bangladesh [54]
Sundarbans 48.8 41.8 103.95 803.14 72.1 39.1 38,432.5 Bangladesh [49]

Hatiya and Chairman Ghat
and ship-breaking yards na 42.9 na na 41.7 5.48 31,658 Bangladesh [55]

Sundarbans Sela River 40.11 33.7 na 476.6 74.4 26.6 30,255 Bangladesh [56]

Kutubdia Channel 10.7–
12.2

145.6–
135.4 na 570.7–

606.3
149.8–
146.9

21.6–
23.9

2317.1–
2434.7 Bangladesh [57]

Halda river 31.9 31.9 26.7 na 71.9 20.5 na Bangladesh [58]
Meghna River estuary 10.6 6.22 na na 42.4 12.5 1290 Bangladesh [58]

Sitakunda shipbreaking area 64.6 255.4 54.2 1084.7 1226.3 68.3 93,015.1 Bangladesh [59]
Halda river 23.8 9.44 100 24 24.5 3320 [45]

St. Martin’s Island <5.0–
30.1

<3.0–
30.9

<4.0–
48.3 na 24.1–

88.0
<10.0–
37.5 na Bangladesh [45]

Sangu River estuary 25.1 29.2 32.8 na 89 19.6 na Bangladesh [12]

Shipbreaking area 7.95–
19.2

15.4–
22.0 BDL na 124.3–

176.4
65.5–
116.9

62,990–
75,210 Bangladesh [60]

Brahmaputra River 6.6 6.2 12.8 162.2 52.7 7.6 na Bangladesh [7]
Sonadia Island na 18.1 16 390.73 38.8 9.03 15,127 Bangladesh [61]

Feni River estuary 35.3 na 33.3 37.9 na 6.47 na Bangladesh [62]

Sundarban 56.9–
78.6

28.7–
41.2

26.3–
39.2

400–
700

55.9–
77.3

33.4–
48.0

26,000–
35,000 Bangladesh [63]

Bay of Bengal coast 14.5 na 16.3 na 184.6 12.7 316.1 Bangladesh [64]

International

Coastal Pearl Bay 35.8 24.2 na na 48.5 31.3 na China [51]

Kalpakkam coast 6.48–
8.86

3.59–
5.07 na 1.83–

2.77
8.34–
10.7

0.32–
0.60

3067.4–
4545.7 India [50]

Beibu Gulf na 11.2 na na 27.8 18.9 na China [65]
South Lagoon 99.8 27.3 71.8 na 148.5 102.2 41,727.2 Tunisia [66]

Hong Kong coast 37.6 66.9 21.8 na 172.1 51.7 29,295.7 Hong Kong [67]

Beibu Gulf 2.1–51 0.7–73 na na 3.5–
161 2.4–62 na China [68]
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Table 3. Cont.

Sites Cr Cu Ni Mn Zn Pb Fe Country References

Matsushima Bay 28.5 11.8 859.8 134.8 21.6 38,900 Japan [69]
Palk Bay 290.3 54.7 27.7 686.1 252.9 14.1 52,802.3 India [70]

Chabahar Bay 92.3 14.1 58 422 39.6 9.2 3.11 Iran [71]
Duyen Hai Seaport 5.11 na na 149 72.6 na Vietnam [72]
Zhoushan Islands 74.5 67.8 na na 107.8 33.9 na China [73]

Shenzhen Bay 40.6 50.8 na na 175.8 37.1 na China [74]

Mirs Bay 20–38 8–42 na na 55–
290 26–99 na China [75]

Izmit Bay 74.9 79.6 42.1 na 211.1 21 45,700 China [76]
Bohai Bay 72.4 28 na na 87.6 24.3 na China [77]

Fangcheng Bay 28.5 20.5 na na 62.4 43.5 na China [78]
Western Taiwan Strait 86.89 22.8 31.3 na 64 18.3 na Taiwan [79]

Mediterranean Sea 15–93 11–49 na na 26–72 11–22 na Turkey [80]
Pearl River Estuary 79.8 38.1 na na 121.8 44.8 na China [81]

Ondo coastal area (Awoye) 0.92 3.21 6.69 2.77 7.27 14.5 23.6 Nigeria [82]
Ondo coastal area (Ayetoro) 8.93 5.45 12.3 2.59 8.36 18.2 25.3 Nigeria [82]
Ondo coastal area (Abereke) 21.1 13.4 17.2 1.84 19.3 15.9 20.4 Nigeria [82]

Atlantic Coast 187 217 30 na 687 125 na Congo [83]
Montenegrin coast 97.6 154 83.3 634 234 70.3 23,400 Montenegro [84]

Gulf of Suez 55.5 5.07 2.89 na 22.4 17.3 2384 Egypt [85]
Bohai Sea 60.4 23.1 23.1 na 79 26.3 na China [86]
Yellow Sea 49.4 22.5 24.9 na 78.7 26.1 na China [86]
Yellow Sea 31 16.9 21.8 na 71.8 31 na South Korea [86]

Liaodong Bay 53 18.5 23.5 na 64.7 24.9 na China [77]
Bohai Bay 72.4 28 33 na 87.6 24.3 na China [77]

Laizhou Bay 61.4 18.6 26.7 na 57.2 20.7 na China [77]

Bohai Sea 14.4–
88.3

3.36–
30.1 na na 24.0–

99.8
11.9–
28.1 na China [87]

Yellow Sea 0–88.8 2.98–
24.6 na na 8.84–

70.1
18.6–
26.5 na China [87]

East China Sea 38.4–
95.9

17.4–
43.4 na na 86.6–

180.6
24.2–
74.3 na China [87]

South China Sea 14.4–
35.3

2.21–
16.7 na na 8.47–

64.4
4.81–
63.9 na China [87]

Mimika na <0.02–
0.54 na na <0.25–

0.59 na Indonesia [88]

Kaohsiung Harbor 127 687 56 na 960 83 na Taiwan [89]

Gulf of Tunis 15–55 1.5–19 14–51 na 27–
450

16–
107 na Tunisia [90]

Subei shoal 19.2 11.3 47.9 na 38.2 0.13 na China [91]
Haizhou Bay 76.4 32 na na 78.3 28 na China [92]

Yangtze River Estuary na 26.6 na na 63.9 21.7 na China [93]

Bohai Sea na 6.7–
34.6 na na 28.7–

61.2
8.7–
32.3 na China [94]

Bohai Sea 89–
219.1

38.1–
61.9 na na na 42.8–

73.6 na China [93]

Red Sea coast na 9.43 17.5 198.8 44.2 11.4 8451.6 Egypt [85]
Pearl River Estuary 39.3 88.7 20.4 na 146 47.9 na Hong Kong [95]

Beibu Gulf 44.4 15.1 na na 52.4 14.6 na China [96]
Coromandel Coast 109.5 76.5 na na 78.76 49.6 na India [11]

Gorgan Bay 17.9 16.8 16.6 na 29.5 7.4 na Iran [97]
Bohai Bay 48.8 16.1 na na 50 19.4 na China [98]

Jiaozhou Bay na 27.3 na na 76 38.5 na China [99]
Zhelin Bay 23.1 7.95 7.5 na 75 35.7 na China [100]

Eastern Beibu Gulf 46.2 27 na na 80.1 16.4 na China [101]
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Table 3. Cont.

Sites Cr Cu Ni Mn Zn Pb Fe Country References

Red Sea coast 20.2 18.7 13.7 na 16.8 3.5 1413 Saudi Arabia [102]
Arabian Gulf 64 297 77 112 48.3 5.3 8474 Saudi Arabia [103]

Al-Kharrar Lagoon na 22.4 26.9 328.9 23.6 0.05 18,730 Saudi Arabia [104]
Salman Bay na 7.45 2.72 94 8.9 0.14 6150 Saudi Arabia [104]
Daya Bay 108.7 24.1 26.8 na 108.9 35.3 na Saudi Arabia [105]

Yellow River estuary 61.6 29.4 27.3 na 71.3 24.6 na China [106]
Coramandal Coast 85.3 54.7 16 na 31.4 18.8 32,059.3 India [11]
Sheyang Estuary 37.2 23.5 na na 62.2 16.9 na China [107]
Xiangshan Bay 81.7 36.8 na na 121 38.5 na China [108]

Persian Gulf 10.2–
16.8

3.45–
5.50

8.19–
18.1 na 4.75–

14.2
2.77–
12.3

773.5–
8420 Iran [109]

Quseir Harbor na 35.8 51 736.8 79.6 48.2 12,003 Egypt [110]
Abutartour Harbor na 46.7 62 653.3 91.7 63.3 15,333 Egypt [110]

Touristic Harbor na 21.3 32 322.3 47.7 39 15,433 Egypt [110]
Crustal value 100 55 75 950 70 12.5 56,300 Egypt [111]

Note: na: No data available.

3.1.2. Copper (Cu)

Copper (Cu), a metal released into the environment through various avenues, includ-
ing mining, metal processing, agriculture, and chemical industries, is widely employed in
both industrial and agricultural practices [112]. Although Cu, along with zinc (Zn), is es-
sential for human health, facilitating hemoglobin synthesis and participating in enzymatic
reactions, excessive concentrations can have detrimental effects [113,114].

In the current study, the concentration of Cu in sediments ranged from 2.74 to
4.61 mg/kg, attributed to recent anthropogenic activities. Site 1 exhibited the highest
concentration of 4.61 mg/kg, while the lowest of 2.74 mg/kg was observed at Site 12. It is
noteworthy that Cu concentrations across all sites remained primarily below background
reference values [115,116]. For context, higher Cu concentrations have been reported in
sediments of Nijhum Dweep and Sundarbans [50,53], with an exceptionally high content
of 42.90 mg/kg reported in sediments from Hatiya, Chairman Ghat, and shipbreaking
yards. Internationally, sediments from the coast of Hong Kong and South Lagoon in Tunisia
displayed very high Cu concentrations, potentially due to industrial runoff and excessive
use of disinfectants in aquaculture that drained into water bodies [66,67,117]. These data
emphasize that Cu contamination is notably associated with ship construction and mainte-
nance [118], highlighting the importance of monitoring and regulating industrial activities
to minimize environmental contamination.

3.1.3. Nickel (Ni)

Ni is a non-biodegradable heavy metal ion with hazardous properties, found in
wastewater and originating from both natural and anthropogenic sources [119]. Natural
sources of atmospheric Ni include volcanic emissions, weathering of rocks, wind-borne
dust, forest fires, and plants [120], while human-made sources encompass shipbuilding,
stainless steel production, gas turbine manufacturing, battery factories, alloy production,
electroplating, printing, and silver refineries [121]. Exposure to Ni can have detrimental
health effects such as dry cough, cyanosis, respiratory issues, and even cancer [112]. In
the present study, Ni concentrations in sediments were observed to range between 12 and
169 mg/kg (Table 3), suggesting anthropogenic influence, likely from metal processing
industries. For comparison, 54.2 mg/kg of Ni was recorded in the sediment of the Sitakunda
shipbreaking area [59], while 32.8 mg/kg and 16.0 mg/kg were reported in the Sangu River
estuary and Sonadia Island, respectively [12,61]. Internationally, higher Ni concentrations
were found in the sediment of Hong Kong and South Lagoon, Tunisia [66,67]. Conversely,
a lower concentration of 11.8 mg/kg was reported in Matsushima Bay, Japan [69], and
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27.7 mg/kg and 58 mg/kg were observed in the sediments of Palk Bay, India, and Chabahar
Bay, Iran, respectively [70,71].

3.1.4. Manganese (Mn)

Mn, derived from crustal weathering, is sourced from terrestrial origins and under-
goes a transformation into complex hydroxyl manganese compounds before precipitat-
ing into sediments. In the current study, Mn concentrations in sediments ranged from
210 to 324 mg/kg (Table 3), with the highest concentration at Site 10 (324 mg/kg) and the
lowest at Site 8 (210 mg/kg). Comparative analysis with previous studies reveals varied
concentrations. For instance, 390.7 mg/kg of Mn was detected in sediments from Sonadia
Island [61], while an exceptionally high concentration of 1084.7 mg/kg was recorded at
the Sitakunda shipbreaking area [59]. In contrast, lower Mn concentrations were reported
in the sediment from South Lagoon, Tunisia [66], and in sediments from the Montenegrin
coast in Montenegro, the Gulf of Suez in Egypt, and the Bohai Sea in China [84–86].

3.1.5. Zinc (Zn)

Zinc (Zn) is naturally present in the Earth’s crust and tends to associate with mud and
organic debris [11]. It is released into the environment from industrial activities, including
metal and paper manufacturing and galvanizing processes [112]. Anti-corrosive paints
containing Zn sulfate, used in shipbuilding, contribute to aquatic Zn concentrations [122].
Zn is vital for physiological functions but can cause health problems in excess [112,123].
In this study, Zn concentrations ranged from 21 to 34 mg/kg (Table 3), which is lower
compared to other studies. For instance, sediment from the Sitakunda shipbreaking area
contained 1226.3 mg/kg Zn [59], and Sonadia Island’s sediment had 38.75 mg/kg [61].
Higher concentrations, ranging from 58 to 978 mg/kg, were reported near a shipbreaking
location in Bangladesh [73–75,86].

3.1.6. Lead (Pb)

Lead (Pb) is a stable element that poses significant risks to human and animal health,
particularly affecting the kidneys and nervous systems [124,125]. It is primarily introduced
into marine environments through air deposition and coal combustion by-products [126].
Pb concentrations in marine sediments vary, with the highest levels found in mud due to
the transportation of Pb-contaminated material [11]. In this study, Pb concentrations in
sediments ranged from 4.91 to 6.31 mg/kg (Table 3), with the maximum recorded at Site
7 and the minimum at Site 5. Comparatively, [59] reported a much higher concentration
of 68.3 mg/kg in the Sitakunda shipbreaking area, and [61] documented elevated levels
in Sonadia Island. Notably, Coastal Pearl Bay in China had 31.3 mg/kg of Pb [52], while
lower concentrations of 0.32–0.60 mg/kg were recorded on India’s Kalpakkam coast [65,66].
In general, coastal areas in Bangladesh exhibited higher Pb levels than observed in this
study [2,50,54,55].

3.1.7. Iron (Fe)

Iron (Fe) in marine environments originates from crustal weathering and riverine
inputs and forms complex hydroxyl compounds that precipitate into sediments [127,128].
Fe oxyhydroxides are efficient scavengers for trace metals and play a critical role in control-
ling the concentrations of these metals in sediments [129]. There is a positive correlation
between Fe and mud, indicating that mud is a primary factor in the distribution of Fe [130].
In this study, Fe concentrations in sediments ranged between 130 and 190 mg/kg, which
is significantly lower compared to other studies. For instance, the Sundarbans sediments
contained 38,432.5 mg/kg [50], Hatiya and shipbreaking yards had 31,658 mg/kg [55], and
93,015.1–75,210 mg/kg was recorded in shipbreaking areas [53,59]. The Kalpakkam coast
recorded 3067.4–4545.7 mg/kg [51], and the South Lagoon had 41,727.2 mg/kg [66], both
considerably higher than the current study.
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3.2. Sediment Contamination Level Assessment
3.2.1. Geoaccumulation Index (Igeo)

Based on the average Igeo values, the HMs contamination level in the study area was
identified in the following order: Mn > Ni > Pb > Zn > Cr > Cu > Fe. Manganese had the
highest Igeo value, while Fe had the lowest. The sites were not found to be contaminated
with metals, according to the Igeo value (Figure 3). Moreover, a slight variation in the
metals was seen in the sampling locations due to the shift in metal concentrations. The
sampling area’s Igeo values for Cu, Cr, Zn, Pb, Mn, Ni, and Fe all indicated that there
was no contamination there. [131] discovered that the Liaohe River protected area’s Igeo
values were categorized as extremely contaminated. Moreover, [48] studied the Turag
River and discovered that the Igeo values for Pb and Cu were still considered to be in the
unpolluted group. This was mostly since metal attribution in the Turag and Liaohe rivers
was significantly higher than in the present study.
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3.2.2. Assessing Contamination Factor (CF) and Pollution Load Index (PLI)

The contamination factor (CF) values for the metals are shown in Figure 4 and can be
organized as follows: lead ranges from 0.26 to 0.31 (mean 0.29), chromium ranges from
0.07 to 0.12 (mean 0.10), and nickel ranges from 0.18 to 2.49. The Ni CF value indicates
less contamination. The Pb CF value suggests that the sediments in the study river were
not contaminated. Cr had CF values below 1, indicating lower contamination levels.
These types of findings were also reported by [132] in an urban river in Bangladesh. The
study concluded that the primary sources of increased metal concentrations in the surface
sediment were domestic wastewater discharge, municipal runoffs, industrial effluents, and
atmospheric deposition. The results of a study conducted on the Meghna River by [133]
aligned with the findings of the present research.
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The general public can receive information about sediment quality from the PLI. Also,
it offers critical details on the pollution levels in the study area to policy and decision-
makers [134]. Figure 2 reports the pollutant load index (PLI) estimates for sediment metals.
The examined area is completely polluted if the PLI score is more than one [135]. PLI
readings in the winter ranged from 1.01 to 1.42 at all test locations, indicating that the study
river’s silt was contaminated (PLI >1). In the summer, all locations except for 8, 9, and
10 saw PLI values below 1. PLI values are greater than unity at all sampling sites due to
the influence of nearby industrial and governmental activity.

3.3. Assessing Potential Ecological Risk Index (PERI)

Using a single-factor ecological risk model [136], we assessed PERI as well as all the
characteristic features that emphasized the combined eco-toxicological effects of multiple
aquatic environment contaminants. The monomial potential ecological risk assessment for
all metals was found to be low across all sites. The PERI values for all metals at all sites
were within the permissible range. The PERI score for all metals in the study area ranged
from 0.28 to 2.18, indicating no risk present (Figure 5). Based on the risk index (RI) values
for the cumulative metal concentrations, the sites were ranked in descending order: S2 > S4
> S10 > S6 > S3 > S7 > S5 > S1 > S9 > S8 > S12 > S11. In terms of the sites, site S2 had the
highest RI value (14.9), while site S11 had the lowest value of 3.20 (Figure 5). Most of the
study area was found to pose no threat to the aquatic environment. To evaluate the quality
of the sediment and identify new sources of metal content, more environmental factors
should be closely monitored, as industry and urbanization are rapidly expanding in the
research area.

3.4. Human Health Risk Assessment

Since the local population in the basin of the river was directly related to raising a
variety of seasonal crops, the risk to human health was investigated. For their agricultural
plots, most of the people used the island sediment. Risk assessment is the key concept and
tool for comprehending adverse effects on human health and exposure to environmental
hazards [137,138]. For three significant pathways, the following procedures were used to
evaluate the risk to human health:
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3.4.1. Estimating Chronic Daily Intake (CDI)

The CDIs of metals for both children and adults at the investigated sites were calculated
and are presented in Table 4. The findings indicate that the exposure routes decreased in the
following order: ingestion > dermal > inhalation, with CDIs being higher for children than
adults. Among the examined metals, Cr exhibited the highest CDI values for both children
and adults across all exposure pathways (Table 4). The dermal exposure route showed a
child’s concentration of 3.02 × 10−8 and an adult’s concentration of 6.47 × 10−9. Higher
consumption among children (3.31 × 10−5) compared to adults (7.09 × 10−6) resulted in
elevated levels of Pb and Cu for children through all exposure pathways. For both children
and adults, Ni intake was found to be lower than that of the other metals (Table 4).

3.4.2. Assessing Target Hazard Quotient (THQ) (Non-Carcinogenic Risk)

Non-carcinogenic risk was determined using the mean CDI values. The highest
HQ value for the ingestion method’s Cr metal concentration for both age groups (adult:
4.07 × 10−3, children: 1.90 × 10−2) are highlighted in Table 4. Moreover, Cr revealed a
prominent position for all types of people, whereas Cr had a higher HQ attribution via
the inhalation approach (Table 4). The following sequence of overall HQ outcomes was
seen for all surrounding local community pathways: Cr > Pb > Cu > Zn > Mn > Ni > Fe.
HQ was measured in order to evaluate HI. The overall HI of the five components depicted
that children were more sensitive than adults (Table 4). The overall findings of 1 revealed
that the research region did not have a significant non-carcinogenic risk effect. Similar
findings were reached in the Yangtze River, where locals were protected from rising above
the unsettling level (HI < 1) [139]. Similar findings were made in Bangladesh’s Gomti River
by [140].
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Table 4. Human health risk assessment for the metal contents found in the sediment of Eastern Saint Martin’s Island.

Metals CDI HQ HI CR TCR

Inhalation Dermal Ingestion Inhalation Dermal Ingestion Inhalation Dermal Ingestion

Adults

Cr 6.47 × 10−9 4.87 × 10−8 1.22 × 10−5 2.16 × 10−6 1.62 × 10−5 4.07 × 10−3 4.09 × 10−3 3.23 × 10−9 2.43 × 10−8 6.10 × 10−6 6.13 × 10−6

Pb 4.27 × 10−9 3.22 × 10−8 8.06 × 10−6 1.22 × 10−6 9.19 × 10−6 2.30 × 10−3 2.31 × 10−3

Cu 2.73 × 10−9 2.06 × 10−8 5.15 × 10−6 6.82 × 10−8 5.14 × 10−7 1.29 × 10−4 1.29 × 10−4

Zn 1.97 × 10−8 1.48 × 10−7 3.72 × 10−5 9.86 × 10−7 7.42 × 10−6 1.86 × 10−3 1.87 × 10−3

Mn 1.96 × 10−7 1.47 × 10−6 3.69 × 10−4 1.40 × 10−6 1.05 × 10−5 2.64 × 10−3 2.65 × 10−3

Ni 2.15 × 10−8 1.62 × 10−7 1.89 × 10−4 1.95 × 10−6 1.47 × 10−5 1.72 × 10−2 1.72 × 10−2

Fe 1.04 × 10−7 7.86 × 10−7 1.97 × 10−4 1.49 × 10−7 1.12 × 10−6 2.81 × 10−4 2.83 × 10−4

Children

Cr 3.02 × 10−8 3.19 × 10−7 5.69 × 10−5 1.01 × 10−5 1.06 × 10−4 1.90 × 10−2 1.91 × 10−2 1.51 × 10−8 1.59 × 10−7 2.84 × 10−5 2.86 × 10−5

Pb 1.99 × 10−8 2.11 × 10−7 3.76 × 10−5 5.70 × 10−6 6.02 × 10−5 1.07 × 10−2 1.08 × 10−2

Cu 1.27 × 10−8 1.35 × 10−7 2.40 × 10−5 3.18 × 10−7 3.37 × 10−6 6.01 × 10−4 6.05 × 10−4

Zn 1.00 × 10−7 9.73 × 10−7 1.74 × 10−4 5.01 × 10−6 4.86 × 10−5 8.68 × 10−3 8.74 × 10−3

Mn 9.13 × 10−7 9.65 × 10−6 1.72 × 10−3 6.52 × 10−6 6.89 × 10−5 1.23 × 10−2 1.24 × 10−2

Ni 1.00 × 10−7 1.06 × 10−6 3.72 × 10−5 9.11 × 10−6 9.63 × 10−5 1.86 × 10−3 1.97 × 10−3

Fe 4.87 × 10−7 5.15 × 10−6 9.19 × 10−4 6.96 × 10−7 7.36 × 10−6 1.31 × 10−3 1.32 × 10−3
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3.4.3. Carcinogenic Risk (CR) Evaluation

The carcinogenic risk (CR) for Pb and Cr was estimated, but the USEPA did not
provide a carcinogen slope factor for Pb. The CR results are presented in Table 1. The
three exposure pathways were most frequently experienced by both adults and children
through ingestion. For instance, there may be significant differences in the CRs of various
metals for various age groups (Table 4). In general, it was found that children had higher
CR values (2.86 × 10−5) than adults (6.13 × 10−6) (Table 4). Also, through the ingestion
route, children were exposed to increased CR in terms of Cr with a bigger effect than any
other factor. As we can see, the total TCR of Cr value was discovered to be more than
1 × 10−5, depicting that the research area was not free from the negative effects of CR
on both adults and children (Table 4). Contrarily, El-Alfy [137] found that youngsters, as
compared to adults, were exposed to carcinogenic risk while consuming metals from the
Burullus Lake sediment.

3.5. Identification of Sources of Heavy Metals in Sediment

The sediments of the study island contained materials that were generally normally
distributed according to the findings of Shapiro-Wilk and Kolmogorov-Smirnov tests.
Using CM, PCA, and cluster analysis, further statistical analyses were performed to give
some prospects that delivered some associated possibilities.

The correlation matrix showed how the metals interacted with one another. Cr vs.
Mn (r = 0.960) showed a very strong positive relationship at the significance level of 0.01
(Table 5). Cr vs. Fe (r = 0.498), Cr vs. Cu (r = 0.463), Cu vs. Ni (r = 0.446), and Cu vs. Mn
(r = 0.438) exhibited moderate linear relation at the alpha level 0.01. Pb vs. Fe (r = 0.009),
Cu vs. Zn (r = 0.053), Mn vs. Cr vs. Zn (r = 0.146), Zn (r = 0.223), and Zn vs. Pb (r = 0.28)
showed a very weak relation. Cu vs. Pb (r = −0.474) showed a moderate negative, weak
association (Table 5).

Table 5. Correlation and principal component analysis among the metal contents.

Cr Cu Ni Mn Zn Pb Fe PC1 PC2 PC3

Cr 1 0.589 0.158 −0.010
Cu 0.463 1 0.394 −0.428 0.362
Ni −0.002 0.446 1 0.085 −0.558 −0.061
Mn 0.960 0.438 −0.011 1 0.592 0.154 0.036
Zn 0.146 0.053 −0.358 0.223 1 0.072 0.376 0.703
Pb −0.084 −0.474 −0.204 −0.179 0.28 1 −0.214 0.450 0.117
Fe 0.498 −0.187 −0.170 0.467 −0.12 0.009 1 0.299 0.336 −0.596
Eigenvalue 2.57 1.85 1.21

% of Variance 36.77% 26.47% 17.32%
Cumulative % 36.77% 63.24% 80.56%

PCA was used to qualitatively assess the clustering tendency of some characteristics.
The PCA results for each factor with an eigenvalue larger than one and a cumulative
variance of 80.56% are displayed in Figure 6. The three grouping components were investi-
gated by the PCA. PC1 contributed 36.77% of the overall variation and had corresponding
loadings of 0.589 and 0.592 due to the large loadings of Cr and Mn (Table 5). According
to the results, PC1 was demonstrated to originate from both anthropogenic and geogenic
sources, including manufacturing firms and refineries [141]. PC2 has a total variance of
26.47% when Pb is loaded (0.450). The high loading of Zn (0.703) in PC3 showed a total
variance (17.32%), which was related to industrial issues.



Water 2023, 15, 2494 18 of 26

Water 2023, 15, x FOR PEER REVIEW 18 of 27 
 

 

Table 5. Correlation and principal component analysis among the metal contents. 

  Cr Cu Ni Mn Zn Pb Fe PC1 PC2 PC3 
Cr 1       0.589 0.158 −0.010 
Cu 0.463 1      0.394 −0.428 0.362 
Ni −0.002 0.446 1     0.085 −0.558 −0.061 
Mn 0.960 0.438 −0.011 1    0.592 0.154 0.036 
Zn 0.146 0.053 −0.358 0.223 1   0.072 0.376 0.703 
Pb −0.084 −0.474 −0.204 −0.179 0.28 1  −0.214 0.450 0.117 
Fe 0.498 −0.187 −0.170 0.467 −0.12 0.009 1 0.299 0.336 −0.596 
Eigenvalue       2.57 1.85 1.21 

% of Variance       36.77% 26.47% 17.32% 
Cumulative %             36.77% 63.24% 80.56% 

PCA was used to qualitatively assess the clustering tendency of some characteristics. 
The PCA results for each factor with an eigenvalue larger than one and a cumulative var-
iance of 80.56% are displayed in Figure 6. The three grouping components were investi-
gated by the PCA. PC1 contributed 36.77% of the overall variation and had corresponding 
loadings of 0.589 and 0.592 due to the large loadings of Cr and Mn (Table 5). According to 
the results, PC1 was demonstrated to originate from both anthropogenic and geogenic 
sources, including manufacturing firms and refineries [141]. PC2 has a total variance of 
26.47% when Pb is loaded (0.450). The high loading of Zn (0.703) in PC3 showed a total 
variance (17.32%), which was related to industrial issues. 

-4 -2 0 2
-4

-2

0

2
-1.0 -0.5 0.0 0.5

-1.0

-0.5

0.0

0.5

0.395

0.324

0.299

1.66

2.06

0.967
-0.486

-2.74

-1.48
2.18

-1.98

-1.19

Cr

Cu
Ni

Mn

ZnPb
Fe

PC
 2

 (2
6.

47
%

)

PC 1 (36.77%)
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To identify specific contamination sites, one cluster displayed a distinct set of loca-
tions, while another cluster showcased a different set of sites [142,143]. Euclidean distance 
and Ward’s linkage were used to determine the clusters. The relationship between the 
analyzed metals and potential sources was examined using cluster analysis at 
(Dlink/Dmax) × 100 < 1 [144]. Cluster 1 consisted of Cr, Cu, Pb, Zn, and Ni, while Mn and 

Figure 6. PCA is among the metals in the sediment of Eastern St. Martin’s Island.

To identify specific contamination sites, one cluster displayed a distinct set of lo-
cations, while another cluster showcased a different set of sites [142,143]. Euclidean
distance and Ward’s linkage were used to determine the clusters. The relationship be-
tween the analyzed metals and potential sources was examined using cluster analysis at
(Dlink/Dmax) × 100 < 1 [144]. Cluster 1 consisted of Cr, Cu, Pb, Zn, and Ni, while Mn
and Fe were in Cluster 2 (Figure 7). The dendrogram generated by the cluster analysis
for sampling sites depicted a significant cluster at (Dlink/Dmax) × 100 < 30 and three
notable clusters: Cluster 1, Cluster 2, and Cluster 3. Cluster 1 included sites S1, S9, S11, and
S8; Cluster 2 comprised sites S3, S6, S7, and S12; and Cluster 3 contained sites S5 and S10
(Figure 7).
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3.6. Policy Implications

The research findings elucidate the need for comprehensive environmental manage-
ment policies to mitigate heavy metal pollution in marine and coastal ecosystems [145,146].
Based on the findings, it is clear that governments should implement policies that regulate
tourism in ecologically sensitive areas by establishing carrying capacities and encouraging
eco-friendly tourism [147–150]. Such sustainable tourism policies will protect natural habi-
tats from the pressures of over-tourism and ensure that the tourism sector thrives without
compromising environmental integrity. Furthermore, the maritime sector is identified as a
significant contributor to heavy metal pollution [151]. Policies that enforce maintenance
protocols for ships and engine boats, focusing on the use of cleaner fuels and technologies,
proper ballast water management, and waste handling, are essential [152]. This will not
only reduce pollution but also drive innovation and sustainability in the maritime sector.
Additionally, the findings call for a regulatory framework for industries operating in coastal
areas. Mandatory environmental impact assessments (EIAs) and adherence to environ-
mental best practices should be required for approval and operation [153]. The policy
should also necessitate that industries have effective pollution control measures in place,
especially regarding heavy metal emissions, and enforce strict penalties for non-compliance.
One industry that deserves particular attention is shipbuilding and shipbreaking. Policies
should ensure that these industries are not only complying with national regulations but
also adhering to international environmental standards [154]. Encouraging cleaner pro-
duction processes, proper waste management, and regular monitoring of environmental
impact should be integral parts of the policy. Lastly, the research indicates that agricultural
activities can be a source of heavy metal pollution. As such, policies that promote the use of
less toxic pesticides and fertilizers, implement soil conservation practices, and provide edu-
cation and resources for sustainable agriculture are imperative. This will not only reduce
pollution but will also enhance food security and the livelihoods of farming communities.
Overall, the policy implications drawn from this research are instrumental in shaping an
integrated approach to environmental management. These recommendations, when imple-
mented effectively, have the potential to mitigate heavy metal pollution, protect marine
and coastal ecosystems, and foster sustainable development in the concerned regions.

4. Conclusions

This study presents a meticulous evaluation of heavy metal concentrations in the
sediments of St. Martin’s Island, establishing a foundation for ecologically-informed
decision-making. The results conclusively show that heavy metal concentrations, including
manganese and iron, are within acceptable limits, indicative of a non-polluted environment
conducive to aquatic life and human well-being. Comparatively, the concentrations of
heavy metals in the study area are significantly lower than in other regional, national, and
international contexts. However, a salient observation was the potential heightened suscep-
tibility of children to heavy metal hazards, despite the absence of carcinogenic risks. While
the study provides valuable insights, it is important to acknowledge certain limitations.
First, the study’s scope is confined to a singular geographic region and does not consider
temporal variations, which could be vital for understanding seasonal fluctuations in heavy
metal concentrations. Moreover, the study did not delve into the chemical speciation
of metals, which is essential for a comprehensive understanding of metal bioavailability
and toxicity. Based on the results and limitations, several avenues for future research
emerge. There is a need to extend the study through longitudinal monitoring to understand
temporal trends and assess the effects of climate change and anthropogenic activities on
heavy metal accumulation. Furthermore, incorporating chemical fractionation and specia-
tion studies would offer a more detailed assessment of the ecological risks and exposure
pathways of heavy metals in marine environments. It is also imperative to explore and
develop innovative and sustainable remediation strategies to manage and mitigate heavy
metal contamination. Additionally, collaborative research at a broader geographic scale
can enhance understanding and facilitate the development of comprehensive policies for
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the conservation of marine ecosystems. Overall, the study underlines the importance of
continuous monitoring and adaptive management for the preservation of St. Martin’s
Island’s ecosystem health. Commitment to research and the implementation of science-
based strategies will be crucial in ensuring the ecological sustainability of this marine
environment for future generations.
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1. Bat, L.; Öztekin, A.; Arici, E.; Şahin, F.; Bhuyan, S. Trace Element Risk Assessment for the Consumption of Sarda sarda (Bloch,

1793) from the mid-South Black Sea Coastline. Water Air Soil Pollut. 2022, 233, 44. [CrossRef]
2. Ali, M.M.; Ali, M.L.; Bhuyan, M.; Islam, M.; Rahman, M.; Alam, M.; Mustary, S. Spatiotemporal variation and toxicity of trace

metals in commercially important fish of the tidal Pasur River in Bangladesh. Environ. Sci. Pollut. Res. 2022, 29, 40131–40145.
[CrossRef] [PubMed]

3. Bhuyan, M.; Bakar, M.A.; Rashed-Un-Nabi, M.; Senapathi, V.; Chung, S.Y.; Islam, M. Monitoring and assessment of heavy metal
contamination in surface water and sediment of the Old Brahmaputra River, Bangladesh. Appl. Water Sci. 2019, 9, 125. [CrossRef]

4. Bhuyan, M.S.; Bakar, M.A.; Akhtar, A.; Hossain, M.B.; Ali, M.M.; Islam, M.S. Heavy metal contamination in surface water and
sediment of the Meghna River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2017, 8, 273–279. [CrossRef]

5. Bhuyan, M.S.; Bakar, M.A. Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh.
Environ. Sci. Pollut. Res. 2017, 24, 27587–27600. [CrossRef]

6. Dvorak, P.; Roy, K.; Andreji, J.; Liskova, Z.D.; Mraz, J. Vulnerability assessment of wild fish population to heavy metals in military
training area: Synthesis of a framework with example from Czech Republic. Ecol. Indic. 2020, 110, 105920. [CrossRef]

7. Zhelev, Z.M.; Arnaudova, D.N.; Popgeorgiev, G.S.; Tsonev, S.V. In situ assessment of health status and heavy metal bioaccumula-
tion of adult Pelophylax ridibundus (Anura: Ranidae) individuals inhabiting polluted area in southern Bulgaria. Ecol. Indic. 2020,
115, 106413. [CrossRef]

8. Bacchi, E.; Cammilleri, G.; Tortorici, M.; Galluzzo, F.G.; Pantano, L.; Calabrese, V.; Vella, A.; Macaluso, A.; Dico, G.M.L.; Ferrantelli,
V.; et al. First Report on the Presence of Toxic Metals and Metalloids in East Asian Bullfrog (Hoplobatrachus rugulosus) Legs. Foods
2022, 11, 3009. [CrossRef]
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